
PIR Search Using Hyperbolic Text Embeddings

Arthur Lu
UCLA

Shufan Li
UCLA

Abstract
Private Information retrieval (PIR) schemes such as Sim-
plePIR allow users to privately fetch entries from a public
database in an obvious manner. Building on top of PIR, more
complex systems such as Coeus and Tiptoe has achieved
oblivious document ranking and retrieval. While effective
and useful, existing systems only support ranking by cosine
similarity of embeddings in euclidean space. Hyperbolic em-
beddings have recently shown promising results in a wide
range of applications such as hierarchical representation and
source code search. In this work, we explore the porblem
of oblivious document ranking and retrieval based on hyper-
bolic embeddings. One of the key challenge is the complex,
highly-non-linear nature of the hyperbolic distance function,
which are to compute naively using existing schemes. To
address this problem, we derived an equivalent, simpler sur-
rogate metric which always yield the same ranking as the
hyperbolic distance metric, as well as a scheme to compute
this metric in an oblivious manner. Experiment results show
that the proposed scheme is correct and achieves better per-
formance thanks to multithreaded optimizations and usage of
specialized hardwares such as GPUs.

1 Introduction

The problem of confidential document retrieval given a user
query is an active research field. Existing implementations
such as Coeus [1] and TipToe [3] generally conquer this prob-
lem by dividing them into two steps. In the first step, the
similarity of the user query and each document is computed
in a private and secure manner. These similarities scores are
then sent back to the client. In the second step, the client
uses a PIR scheme to privately retrieve the actual document.
Existing works typically employs some Euclidean embed-
dings with inner product as the similarity metric. Hence, the
first step can be easily achieved using oblivious matrix-vector
product multiplication.

Recent works in representation learning such as [8] suggest
that hyperbolic embeddings may be a better alternative over

certain domains such as code, as they are able to better repre-
sent the hierarchies of the dataset. In this paper, we present
an oblivious document ranking and retrieval system using
hyperbolic embeddings. The key contribution of our work is a
novel computation scheme for the hyperbolic distance metric
in the first of the two steps.

Concretely, we first derive a linear metric that gives the
same ranking to the non-linear hyperbolic distance function.
The we adopt the LWE scheme used in SimplePIR [4] to
compute such metric in a secure and private manner. Lastly,
we adopt several off-the shelf optimization schemes such as
GPU-acceleration and multi-threading, achieving a stronger
performance than previous works.

1.1 Threat Model & Privacy Guarantee
We consider a public or private database search system involv-
ing multiple client users and a single server containing some
database of documents. Clients send queries to the server to
search over the database and then retrieve the documents. We
adopt the threat model from existing implementations where
a strong adversary may arbitrarily compromise the server or
the network as in Coeus. Such an adversary may have ac-
cess to the database along with detailed information about the
computation being performed by the server on queries and
databases. We maintain the same security guarantee of query
privacy where an adversary learns nothing about a query.

2 Related Work

Hyperbolic Embeddings have gained popularity as an alter-
native to Euclidean ones. [6] showed that embeddings based
on a hyperbolic distance metric better represent the natural
hierarchical structure of texts. [8] further highlighted its advan-
tage in code searching applications and achieved considerable
improvements in code retrieval tasks. [2] demonstrated that
hyperbolic embeddings can be useful in recommendation sys-
tems. [5] further extends hyperbolic embeddings to computer
vision and shows that it can represent rich visual semantics.

1



Given its well-recognized advantages, supporting searches
based on hyperbolic embeddings can greatly improve the
usefulness of private information retrieval (PIR) systems.

2.1 Secure Multiparty Computation
To achieve query privacy, secure multiparty computation can
be utilized to compute oblivious document rankings based on
a query string cipher. New methods, such as SECFLOAT, en-
sure accuracy in floating point math when performing 2-party
computation, [7]. SECFLOAT supports correct floating-point
primitive operations addition, multiplication, division, and
comparison. Additionally, it supports precise trigonometric
functions, exponentiation, and logarithms. While these works
allow precise floating point computation of non-linear func-
tions, they can be expensive and hard to optimize. Hence, we
use fixed-point approximation in our work.

2.2 Secured Search
Many relevant works aim to provide secure document search
and retrieval. Coeus [1] ranks a document’s relevance to a user
query using the term frequency-inverse document frequency
(TF-IDF) matrix. Its protocol consists of three rounds. In the
first round, a user sends an encrypted query vector and se-
curely computes the relevant scores of documents via matrix-
vector multiplication. In the second round, a user fetches the
metadata of top results. In the final round, the user securely
fetches a single document of interest. TipToe [3] extends the
idea by replacing the TF-IDF matrix with semantic embed-
dings created by machine learning models, allowing fuzzy
searches based on semantic similarity. It uses homomorphic
encryption to compute the inner products of a query vector
and document vectors and then sends the encrypted inner
product scores to the client. Unlike Coeus, TipToe employs a
clustering algorithm and only sends scores of the best-match
cluster, achieving a O(

√
N) complexity.

3 Background

3.1 LWE-based encryption
Learning-with-Errors(LWE) is a common scheme used in
linearly-homomorphic encryption. Concretely, the Regev-
style LWE encryption is parameterized by encrypting the
dimension of secret n ∈N, the number of samples m ∈N, and
integer p,q where q ≫ p. It maps plain text in Zp to cipher
text in Zq.

The private key consists of a random secrete s ∈ Zn
q. The

public key is the vector (As+ e) mod q where the matrix
A ∈ Zm×n

q is a random matrix and e ∈ Zm is an error term
sampled from some prior noise distribution X .

Given a plain-text vector v ∈ Zm
p , the cipher-text is com-

puted as C = (C1,C2) = (A,As + e + ⌊ q
p⌋v) mod q. We

can decrypt the ciphertext by finding v′ = ⌊ (C2−C1s) mod q
⌊ q

p ⌋
⌉

mod p.
Given an arbitrary linear transform T , we can apply it to a

ciphertext through TC = (TC1,TC2). We can also add a plain
text z to a cipher-test through C+ z = (C1,C2 + ⌊ q

p⌋z).

3.2 SimplePIR

SimplePIR [4] showed that we can reuse A without com-
promising security. Hence, the client only needs to send C2,
which is significantly smaller.

Specifically, suppose we have L document vectors v1...vl
and we want to compute the inner product qT vi of some vector
q and all document vectors (i = 1,2...L) in an oblivious man-
ner, the client generates a secret s, but use a pre-downloaded
hint matrix A to derive the public key As+ e. It encrypts the
vector q to cipher-text Cq = (Cq1,Cq2). Since Cq1 = A, there
is no need for the client to send this matrix. The client simply
sends Cq2 which is just one vector of dimension m.

Upon receiving Cq2, the server computes the cipher text
corresponding to the results Cans = (V · A,V ·Cq2), where
V = (v1, ..vL)

T ∈ ZL×m
q . Observe that V ·A ∈ ZL×n

q is inde-
pendent of the query, and hence can also be pre-downloaded.
The server only needs to send back V ·Cq2 ∈ ZL×1

q , which is
significantly smaller.

3.3 Hyperbolic Embedding

We use Poincaré disk model for hyperbolic spaces, which
embed a hyperbolic space Hn into a unit disk Dn =
{x ∈ Rn;∥x∥ ≤ 1} in Rn. Given embeddings of two points
u,v ∈ Dn, the hyperbolic distance can be computed as

d(u,v) = arccosh(1+2
∥u− v∥2

(1−∥u∥2)(1−∥v∥2)
) (1)

4 Method

4.1 Simplifying Hyperbolic Distance

Let δ(u,v) = ∥u−v∥2

(1−∥u∥2)(1−∥v∥2)
, then d(u,v) = arccosh(1 +

2δ(u,v)), which is a monotonically increasing function with
respect to δ. Hence, for the purpose of search and ranking, we
can simply rank δ(u,v) and avoid computing the non-linear
arccosh function.

Given a query vector q, and L document vectors v1, ...vL.
We note the following relation holds:

2



argminiδ(q,vi) = argmini
∥q− vi∥2

(1−∥q∥2)(1−∥vi∥2)
(2)

= argmini
∥q− vi∥2

(1−∥vi∥2)
(3)

= argmini
∥q∥2 +∥vi∥2 −2qT vi

(1−∥vi∥2)
(4)

= argmini(γi∥q∥2 +βi +qT
ξi) (5)

, where γi =
1

(1−∥vi∥2)
, βi =

∥vi∥2

(1−∥vi∥2)
, and ξi =

−2vi
(1−∥vi∥2)

are
independent of the query vector q and can be easily precom-
puted.

Now suppose the query vector q and document vector vi is
of dimension and q = (q1,q2, ..qd), ξi = (ξi1,ξi2, ..ξid). We
can construct a vector q′ = (q1, ..qd ,∥q∥2). Then we can com-
pute Eq. 5 via a linear transformation q′ → tT

i q′+βi ∈ Zd+1
p

where ti = (ξ1, ..ξd ,γi)∈Zd+1
p . To compute scores for all doc-

uments, we can simply compute the matrix T = (t1, ..tL)T ∈
ZL×(d+1)

p and a offset vector β = (β1, ..βL) ∈ ZL
p, and simple

compute T q′+β.

4.2 Secure Computation
We have reduced the problem to securely compute T q′+β,
where T,β can be precomputed on the server side and are
independent of the queries. This can be achieved by modifying
the protocols of SimplePIR described in Sec. 3.2.

Formally, the server precomputes the hint (T ·A,A) and
sends it to the client. To perform a query, the client generates
a secrete s, builds the augmented query vector q′ based on
the raw query q, and encrypts q′ to obtain C = (C1,C2) where
C1 = A. The client only sends C2 = (As+ e+ ⌊ q

p⌋v) mod q
to the server. The server obtains the ciphertext of the answer
Cans = (V ·T,T ·C2 +β), where V ·T was precomputed and
already included in the hint. Hence, the server only sends
back T ·C2 +β. The client finally decrypts Cans by combining
newly received T ·C2 +β and the precomputed V ·T in the
hint.

5 Fixed-Point Approximation

Since q′,ξi,γi,βi are floating point numbers, we quantize them
by a constant factor of K = 256. In particular, we scale q′,ξ,γ
by a factor of 16, and βi by 256. This will scale the final score
by 256. Since scaling the score by a constant does not affect
the ranking result, we can directly rank the fixed point score
without additional changes to the system.

5.1 Implementations
We implement the LWE protocol by extending TipToe and
implementing it in Python with a CPU and GPU implementa-

tion. In the TipToe implementation, we leverage the existing
SimplePIR code and matrix operations to perform the LWE
protocol replacing the TipToe search protocol. In Python, we
use numpy and pytorch to implement the protocol for both
CPU and GPU execution.

6 Evaluation & Results

We evaluate our implementation based on CPU time and net-
work overhead compared to baseline TipToe per query. We
divide the CPU time between preprocessing time which is run
only once per database, and answering time which is the time
required to compute answers to queries. We also measure the
user’s network upload and download bandwidth requirements.
Finally, we measure the hint size, which is the one-time down-
load for each client. The evaluation was run on a 8 Thread
Zen 1 machine with 8 GB of memory. The evaluation was
performed on a fake corpus of 1k documents using a 768
embedding size and averaged over 1k queries. Preprocessing
time and hint size are reported over all queries. Answering
time, upload, and download are reported as average per query.

Implementation Preproces Answer / Q
TipToe Baseline 2.02 s 346 µs

TipToe Extension 2.04 s 1004 µs
Python CPU 3.00 s 604 µs
Python GPU 3.16 s 26 µs

Table 1: Preprocess Time, Answer Time

Implementation Hint Size Up / Q Down / Q
TipToe Baseline 17.6 MB 16.2 MB 0.13 MB

TipToe Extension 17.6 MB 16.2 MB 0.13 MB
Python CPU 13.8 MB 5.86 KB 7.63 KB
Python GPU 13.8 MB 5.86 KB 7.63 KB

Table 2: Hint Size, Client Upload, Client Download

The TipToe extension was able to maintain the existing
communication overhead, but was worse in average answer-
ing time per query. This was expected, since the server com-
putation involved several more matrix operations than before.
The client download bandwidth increase is explained by the
additional return values from the server.

We also evaluate our python implementation’s scaling to
different database sizes. We run the Python CPU and GPU
implementations on databases with 1k, 2k, 4k, and 10k doc-
uments. We keep the same embedding size of 768. For this
evaluation, answering time was measured over the total 1k
query response and not averaged. We plot the results in 1.

3



Figure 1: Python CPU vs Python GPU Answering Time

The Python implementation was able to improve on the
communication overhead compared to the TipToe baseline.
TipToe implemented several optimizations on answering
speed by adding additional communication such as the query
tokens, which the Python implementation did not. However,
this resulted in higher latency per query response since more
computation was required on the server. Additionally, the
use of GPU power allowed for parallelization of the protocol
which decreased the answer delay significantly compared to
the python CPU implementation and baseline.

We also show the protocol’s correctness in our evaluation
against a non-private fixed point reference implementation.
For each of the 1000 test queries, we compare the computed
distance scores to the reference distances calculated in the
plain. We plot the reference scores against the decrypted
scores from the output of our protocol in 2. Note that the
deviation between reference scores and computed scores is
negligible, demonstrating our protocol’s correctness.

We also show the error in the fixed point approximation of
floating point operations. We plot the fixed point reference
scores against the floating point reference scores in 3. We note
that as the floating point value increases, the fixed point rep-
resentation deviation increases. However, the fixed-point and
floating-point score generally retain a linear correspondence.

7 Discussion

7.1 Security Guarantee

We introduced three key changes to the SimplePIR protocol.
First, to compute the hint we use the derived transform matrix
T instead of the document matrix V . However, this does not
compromise privacy since this operation is in the preprocess-
ing step and does not depend on user-query. Second, instead
of sending the raw query q, the client sends the processed
query, q′ which has one additional dimension. However, this
does not compromise privacy, as the LWE-based scheme guar-
antees the server learns nothing about the query sent by the

Figure 2: Reference Scores vs Protocol Scores

Figure 3: Fixed Point vs Floating Point

4



client. Since given q, we can compute q′, and vice versa. Nei-
ther q nor q′ will be compromised. Lastly, We add a constant
β to the matrix-vector-product, instead of directly send the
product back. The does not leak any additional information
as the operation is query-independent.

7.2 Performance
We mostly attribute the performance gain to the off-the-shelf
GPU acceleration provided by torch, and multi-threading pro-
vided by NumPy. While our method is implemented in python,
it outperforms Tiptoe implemented in Go because Tiptoe calls
a single-threaded, nested-loop implementation of the matrix
multiplication routine.

8 Conclusion

Our project demonstrates that private information retrieval sys-
tems can efficiently implement complex search systems using
custom embeddings and similarity scoring. We show that sim-
ple changes to implementation can allow existing protocols to
extend support for hyperbolic embeddings and distance com-
putation while preserving privacy. We also show that using a
LWE encryption scheme can privately compute on fixed point
data without compromising accuracy with bounded distance
score values. We show that the impact of such additions can
be implemented with only a modest impact on performance.
Future work may continue to extend PIR schemes with more
up-to-date search models.

External Collaborators & Previous Work

We did not work with any outside collaborators on this project.
This project does not overlap with any other courses. No
progress was completed on this project before the course.

References

[1] Ishtiyaque Ahmad, Laboni Sarker, Divyakant Agrawal,
Amr El Abbadi, and Trinabh Gupta. Coeus: A system
for oblivious document ranking and retrieval. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 672–690, 2021.

[2] Konstantin Bauman, Alexander Tuzhilin, and Moshe
Unger. Hypercars: Using hyperbolic embeddings for gen-
erating hierarchical contextual situations in context-aware
recommender systems. Information Systems Research,
2024.

[3] Alexandra Henzinger, Emma Dauterman, Henry
Corrigan-Gibbs, and Nickolai Zeldovich. Private web
search with tiptoe. In Proceedings of the 29th symposium
on operating systems principles, pages 396–416, 2023.

[4] Alexandra Henzinger, Matthew M. Hong, Henry
Corrigan-Gibbs, Sarah Meiklejohn, and Vinod Vaikun-
tanathan. One server for the price of two: Simple and fast
single-server private information retrieval. Cryptology
ePrint Archive, Paper 2022/949, 2022.

[5] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Usti-
nova, Ivan Oseledets, and Victor Lempitsky. Hyperbolic
image embeddings. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 6418–6428, 2020.

[6] Maximillian Nickel and Douwe Kiela. Poincaré embed-
dings for learning hierarchical representations. Advances
in neural information processing systems, 30, 2017.

[7] Deevashwer Rathee, Anwesh Bhattacharya, Rahul
Sharma, Divya Gupta, Nishanth Chandran, and Aseem
Rastogi. Secfloat: Accurate floating-point meets secure
2-party computation. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 576–595. IEEE, 2022.

[8] Xunzhu Tang, zhenghan Chen, Saad Ezzini, Haoye Tian,
Yewei Song, Jacques Klein, and Tegawende F. Bissyande.
Hyperbolic code retrieval: A novel approach for efficient
code search using hyperbolic space embeddings, 2023.

5


	Introduction
	Threat Model & Privacy Guarantee

	Related Work
	Secure Multiparty Computation
	Secured Search

	Background
	LWE-based encryption
	SimplePIR
	Hyperbolic Embedding

	Method
	Simplifying Hyperbolic Distance
	Secure Computation

	Fixed-Point Approximation
	Implementations

	Evaluation & Results
	Discussion
	Security Guarantee
	Performance

	Conclusion

